SPE-API Technical Luncheon: "Developing an Early-Warning System for Well/Reservoir Problems"

Fred Goldsberry – WaveX[®] Chris Fair – Oilfield Data Services, Inc.

> NEW ORLEANS, LA AUGUST 17, 2010

Outline

- Background: Data Acquisition & Processing
 - Data Measurement, Transfer and Visualization
 - Virtual Rate Measurement

• The Wellbore-Completion-Reservoir System

- o PVT
- Heat Loading & Thermal Modeling
- Inflow Modeling

• Analysis/Evaluation Tools

- o PTA, RTA, Decline Analysis, p/z
- Nodal Analysis
- Reservoir Simulation

Outline II

- Creating an On-line Well Monitoring package
 - Take a batch process and make it continuous
 - The Hard Parts in More Detail
 - × Wellbore Thermal and PVT Modeling
 - Completion Model
 - Reservoir Model (WaveX Reservoir Model)
 - x Don't Forget the Coupled Effects
 - Need to have a Closed Solution for Well Bore and Reservoir
 - Effective Transient & Regime Recognition
 - Combine steady-state and transient effects into same system of eqns
 - Include Internal Checks for Validity

Data Acquisition: Instrumentation

- What do I really need to measure accurately?
 - Wellhead Pressure
 - Wellhead Temperature (Thermowell)
 - Flow Rates of Oil, Gas & Water
 - × Multiphase Meters, Venturi Meters, Turbine Meters
 - 🗴 Sep T & P
 - Choke Setting
 - Virtual Rate Measurement (VRM)
 - Bottomhole Pressure
 - Bottomhole Temperature
 - Distributed Temperature
 - NOTE: Last 3 not required for gas wells (still nice to have)

Data Acquisition: Pressure Gauges

- What to ask your gauge supplier:
 - What is the resolution (digital) or "effective resolution" for Scada gauges?
 - How many bits in the A/D converter?
 - (Needs to be >14 for 1 psi resolution)
 - How quickly can it sample or be polled?
 - Is it thermally compensated? How much temperature change is required to cause the pressure to change 1 psi?
 - Does the gauge measure and export its internal temperature?
 - How susceptible is the gauge to plugging?

A/D Conversion: Scada/DCS Resolution based on Scale and A/D Conversion

		Resolu	ution per bit ((Bar)	
Range (bar)	8	12	14	18	24
0-200	0.78125	0.048828	0.012207	0.000763	1.19E-05
0-400	1.5625	0.097656	0.024414	0.001526	2.38E-05
0-700	2.734375	0.170898	0.042725	0.00267	4.17E-05
0-1000	3.90625	0.244141	0.061035	0.003815	5.96E-05

Data Transfer: Don't Lose Resolution!

- Before it gets to you, Your Data is likely to pass through:
 - One or two A/D converters
 - An I/O card on the Control Panel
 - Dead-band filters
 - Signal filters
 - Archive filters
- You can lose sampling resolution and instrument resolution at any point along the way

Virtual Rate Measurement

- Used for Scenarios where there is not continuous rate measurement
- Common Instances:
 - $\circ\,$ Use productivity and periodic test sep rates
 - Use choke settings and DPs
 - Use WHT and Heat Loading model
 - Allocation by Difference (Platform)
 - o Sonic

The Wellbore-Completion-Reservoir System

Governing Physics Laws & Rules

- Flow in Pipe (Well Bore)
 - o 1st Law of Thermo (Mechanical Energy Balance)
 - Fluid Mixing Rules
 - Continuity

• Flow in Reservoir

- \circ 1st Law of Thermo
- o 2nd Law of Thermo (Power Dissipation Seeks Equilibrium)
- Darcy's Law (porous media)
- Radial Coordinates: Flow is Radially Constrained
- Flow in Completion & Near-Well Region
 - Conflicts resolved between Radial Flow and Well Geometry
 - Common Solution is to employ a "skin" factor

Important Relationships For Multi-Phase Wells

- Well Bore
 - PVT Relationships
 - × Density
 - 🗙 Viscosity & Internal Energy
 - **×** Effective Friction Contribution
 - × Phase Interaction (Phase to Phase & Phase to Pipe BL)

• Rock & Fluid Interactions

- Formation Compressibility and Elasticity (System Comp)
- Capillary Forces & Capillary Memory
- Threshold Pressure (Capillary Entry Pressure)
- Relative Permeability
- Inertial Forces

Other Complications

- Residence Time
- Joule-Thompson Cooling/Heating
- Partial Penetration/Perforation
- Pay Loss/Growth away from Completion
- Coupled Effects
 - Rate Surge/Decay
 - Rate-Thermal
 - Phase Blocking (Water Block, Condy Block)
 - Rate-Thermal-Phase Effects

Coupled Rate-Thermal Problem

- DHG responds "normally"
- WHP gauge responds differently
- WHP increases as DHGP decreases during flow
- Wellbore starts off "cool" & with higher inflow potential (flush production)
- Wellbore heats up, density decreases (head decreases)...mass flow rate decreases...which affects the heat loading...which affects the density...
 - And so on...and so on...
 - Continues until the well reaches thermal equilibrium

Analysis Types and Their Objectives

- PTA (Pressure Transient Analysis)
 - Skin, Perm, Deliverability, Communication, Productivity, Reservoir Boundaries, Reserves
- RTA (Rate Transient Analysis)
 - Same as PTA, but with less reliability on boundaries
- Pres/z Plots (gas) & DPres Plots (oil)
 Oil and/or Gas in Place
- Decline Analysis: Flowing BHP vs Time
 Apparent Reserves Running MBAL
- Inverse Productivity Analysis (DP/DQ vs Time)
 Apparent Reserves Running EBAL

Analysis/Evaluation Tools: PTA

- Build-up: After flowing the well for a while, shut it in and observe the pressure response
- Drawdown: After shutting in the well for a while, flow it on a constant choke and observe the pressure and rate response
- 2-rate: Change the rate enough to create a new transient; observe P & Q
- Multi-rate: Change the rates and compare DP vs Q
- Communication: Shut-in a well and see if a neighboring well causes the Pressure to drop

Analysis Type Examples

- Build-up PTA Derivative
- Drawdown PTA Semilog
- RTA
- P/z
- Decline Analysis (Running MBAL)
- IPA (Running EBAL)

Nodal Analysis

- Compares Reservoir Inflow (IPC) with Wellbore Performance (VLP)
 - Allows Prediction of DP to achieve a Rate (vice versa)
 - Allows Prediction of Liquid Loading Scenarios
 - Allows Optimization of Tubular Design

Problems with Nodal

- Infinite # of combos of skin & perm calculate the same rate (Can't use nodal to determine skin or perm)
- User has to pick the right inflow model and right VLP correlation
- Doesn't handle transient situations well may match your well today, but not next month

Nodal - IPC + VLP

File Ma	nalyzer - C:	users UDSI Desktop	Tools	Initial out2.Pr	a - [WellboreDeliverabil	ityDialog]		_										-
Gas Rate	WHP	C Inflow	Inputs	Units			100	500	1000	2000	3000	4000	5000	I	1	к	L	M
2000	100	PSTAR	6500	osi		25000	1239.9	1393.3	1794.8	2892.1	4070.1	5230.4	6363.2					
3000	500	Max Pwf	6500	psi		50000	2500.0	2579.0	2812.0	3588.2	4563.2	5602.3	6658.5					
4000	1000	Pwf Step	100	osi		75000	3759.1	3810.6	3966.8	4530.4	5313.2	6210.0	7163.8					
5000	2000	Perm	10	md		100000	5000.7	5038.1	5153.0	5583.3	6217.2	6983.2	7830.9					
6000	3000	Skin	-1.5			125000	6227.1	6256.1	6345.7	6688.4	7211.7	7867.9	8617.5					
7000	4000	D	.0000001	1/mcf		150000	7449.3	7472.8	7545.4	7826.9	8266.8	8833.2	9496.2	-				
8000	5000	Time	24	Hours		175000	8676.9	8696.4	8757.0	8993.7	9369.5	9862.5	10450.8		-		1	
10000		Radius Override	F			200000	9862.5	9879.3	9931.5	10136.5	10465.2	10901.9	11430.0					
15000		Radius	0	ft		250000	12211.7	12224.7	12265.4	12426.1	12687.2	13039.9	13474.3					
25000		DV.	0.350	ft.		20000												
50000		Net TVT Pay	120.0	6		Pwf	6400.0	6300.0	6200.0	6100.0	6000.0	5900.0	5800.0	5700.0	5600.0	5500.0	5400.0	5300.0
75000		Porosity	0.11			055	7294.4	14587.5	21878.7	20167.3	36452.6	43733 7	51009.9	58280.2	65543.6	72700 2	80045.8	87282.3
100000	1	Sw	0.22	+		Onss	8252.4	16504.2	24754.7	33003.2	41248.8	49490.7	57728.0	65959.6	74184.5	82401.6	90609.7	98807 5
125000		50	0.00			Pavo	6449.9	6399.5	6348.8	6297.9	6246.7	6195.2	6143.4	6091.2	6038.8	5986.1	5933.0	5879.6
150000		So.	0.78			rury	1008.1	1004.0	000 0	005.8	001.6	0873	083.1	078.8	074.4	070.0	065.6	061 1
175000		- Sg Cf	4.67	microsine			0.028	0.028	0.028	0.078	0.028	0.027	0.027	0.027	0.027	0.027	0.027	0.027
200000	1	Plot 2	I Ore			8	0.642	0.645	0.020	0.652	0.655	0.659	0.667	0.027	0.627	0.672	0.677	0.601
200000		WCD Duf	4050	IV Qpss		ota	10595 965	10500 400	10414 714	10229 504	10241 962	10154 707	10067 269	0.000	0.003	0.075	0713 622	0633.70
230000		WCD PWI	1000	4		CLO	10303.003	10300.499	10414./14	10320-304	10241.005	10154.707	10007.200	3373.000	3030.070	3001.330	3712.033	3022.73
h: 60							— 15	R	elations	hips for us	wellbore sing an equ	e pressu iilibirum tl	re drop a nermal prof	is a funt ile 3000	ion of ra	nte 0	5000	
th: 60					Depth: 180	7000	15 Qss	R	elations	hips for us 500	wellbore sing an equ – 1000	e pressu uilibirum tl	re drop a nermal prof	ns a funt ile 3000	ion of ra 400	nte 0	5000	
oth: 60					Depth: 180	7000-	15 Qss	R	elations	hips for us 500	wellbore sing an equ — 1000	e pressu iilibirum ti 	re drop a nermal prof	ns a funt ile 3000	ion of ra	nte Ø	5000	
th: 60 th: 210					Depth: 180	7000 -	15 Qss	R	elations ^{DO} Opss	hips for us	wellbore sing an equ – 1000	e pressui iilibirum tl 20	re drop a nermal prof	is a funt ile 3000	ion of ra	nte 0	5000	
th: 60 th: 210					Depth: 180	7000 -	15 Qss	R	elations DO Opss	500	wellbore sing an equ – 1000	e pressui illibirum tl 20	re drop a nermal prof	ns a funt ile 3000	ion of ra	nte 0	5000	
th: 60 th: 210					Depth: 180	7000 -	15 Qss	R	elations	500	wellbore sing an equ - 1000	e pressui iilibirum ti 	re drop a nermal prof	ile 3000	ion of ra 400	ate O	5000	
th: 60 th: 210					Depth: 180	7000 -	15 Qss	R	elations 00 2pss	hips for us	wellbore sing an equ – 1000	e pressui illibirum tl 20	re drop a nermal prof	is a funi ile 3000	ion of ra	ote	5000	
th: 60 th: 210					Depth: 180	7000 - 6000 - 5000 -	15 Qss	R	elations 00 2pss	hips for yes	wellbore sing an equ – 1000	e pressui illibirum tl 20	re drop a nermal prof	ile 3000	ion of ra 400	ate O	5000	
h: 60 h: 210					Depth: 180	7000 -	15 Qss	R	elations 200 2pss	hips for 500	wellbore sing an equ - 1000	e pressui illibirum ti 20	re drop a remal prof	ns a funl ile 3000	ion of ra	θ θ	5000	
h: 60 h: 210					Depth: 180	7000 - 6000 - 5000 -	15 Qss	R	elations 00 2pss	hips for 500	wellbore sing an equ - 1000	e pressui illibirum ti 20	re drop a nermal prof	ns a funl ile 3000	ion of ra	nte θ	5000	
h: 60 h: 210					Depth: 180	7000 - 6000 - 5000 - (s 4000 -	15 Qss	R	elations 00 2pss	hips for us	wellbore	e pressui illibirum ti 20	re drop a nermal prof	ns a funl ile 3000	ion of ra	ote	5000	
h: 60					Depth: 180	7000 - 6000 - 5000 - (10 4000 - 12 4000 -	15 	R	elations 00 2pss	hips for us	wellbore	e pressui ilibirum ti	re drop a nermal prof	ns a funl ile 3000	ion of ra	ate ⁰	5000	
h: 60			~~		Depth: 180	7000 - 6000 - 5000 - (sc) 4000 -) M 3000 -	15 Qss	R	elations DO Oppss	hips for us	wellbore	e pressui ilibirum ti	re drop a nermal prof 000	ns a funl ile 3000	ion of ra	ete P	5000	
h: 60			~~		Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (st 4000 - 3000 -	15 Qss	R	elations po pos	hips for u	wellbore	e pressui illibirum ti 20	re drop a remal prof	as a funl ile 3000	400	ate 9	5000	
h: 60			~~		Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (ist 4000 - Xe 3000 -	15 Qss	R	elations 00 00 00 00 00 00 00 00 00 00 00 00 00	hips for us	wellbore	e pressui illibirum ti 20	re drop a eemal prof	ns a funl ile 3000	400	əte 9	5000	
h: 60					Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (10 4000 -) 4000 - 3000 - 2000 -	15 	R	elations 00 00 00 00 00 00 00 00 00 0	hips for us	wellbore	e pressui illibirum ti 20	re drop a eemal prof	is a funl ile 3000	400	ate 0	5000	
h: 60					Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (180 4000 - 3000 - 2000 -	15 Q95	R	elations DO OPSS	hips for us	wellbore	e pressui illibirum ti 20	re drop a eemal prof	is a funl ile 3000	ion of ra	ate 0	5000	
h: 60			~~~		Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (is 4000 - ¥ 3000 - 2000 - 1000 -	15 	R	elations DO DO DO DO DO DO DO DO DO DO	hips for us	wellbore	20	re drop a eemal prof	is a funl ile 3000	alon of ra	ate 0	5000	
h: 60			~~		Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (sel) 4000 - 3000 - 2000 - 1000 -	15 	R	elations 00 2055	hips for us	wellborg	e pressui illibirum ti 20	re drop a eemal prof 000	is a funl ile 3000	ion of ra	ate 9	5000	
h: 60			~~~		Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (100 - 2000 - 1000 -	15 	R	elations DO QDSS	hips for us	wellbore	e pressui illibirum ti 20	re drop a eemal prof	is a funl ile 3000	ion of ra	ate 9	5000	
h: 60					Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (se 4000 - 3000 - 2000 - 1000 -	15 	R	elations DO OPSS	hips for us	wellborg	pressui illibirum ti 20	re drop a eemal prof	is a funl ile 3000	ion of ra	ate 0	5000	
h: 60					Depth: 180 Depth: 10458	7000 - 6000 - 5000 - (ist) 4000 - X4 3000 - 2000 - 1000 - 0 - 0		R	elations DO QPSS 40K	hips for us	wellborg sing an equ – 1000	k pressu illibirum ti 200	re drop a eemal prof 000	120K	1400	hte P K 1	5000	180K

Ready

Reservoir Simulation

- Tracks behavior (esp Pressure and Saturation) in the reservoir
- Incorporates Multiple Wells/Multiple Zones
- Matches History and Attempts to Predict Future Performance
- Coupled with a Wellbore Simulator, can do amazing things
- Drawback: It takes a while to run...but they're getting faster

Components of a Real-Time Well Evaluation Package

TAKE ALL THE BITS AND BOLT THEM TOGETHER

What Do We Already Have? (Batch Process)

- Hopefully...adequate data frequency and quality
- "Snapshot" VLP
- "Snapshot" Inflow
- Reservoir Simulator
- Wellbore Model
- Geologic/Geo-Physical Model
- Enough Well History?

What Do We Need to Make it Real-Time?

- Link to RT Data (w/Validation of Data)
- Closed-Loop Wellbore Solution (w/Thermal Modeling)
- Closed-Loop Completion Solution Can incorporate w/Reservoir Model
- Closed-Loop Reservoir Model
- Transient Recognition
- Regime Recognition
- Prediction vs. Actual Comparison
- Engineering by Difference (Did anything Change?)

Closed-Loop WB Components

- Wellbore Thermal Modeling (Warming/Cooling)
- Liquid Drop Out (Build-ups)
- Liquid Surge (Start-up)
- Phase Behaviour EOS Calcs
 - Use SRK or PR w/Peneloux
- Rate Modeling
 - Residence Time
 - Rate Surging & Decay
- Coupled Effects (Rate-Thermal-Phase)

Developing Thermal/PVT Models

- Run Static Temp/Pressure Survey
- Run Flowing Temp/Pressure Survey

 Multiple Rates
- Develop Heat Transfer Model Account for:
 - Heat Capacity of Fluids/Tubulars/Annuli/Sinks
 - Heat X-fer via Conduction
 - Heat X-fer via Convection
 - Heat X-fer via Forced Convection
- Can Tune PVT using same data...just get a good sample first

• Rate of Change in Density Caused by Changes in Mass Flux

Differential Form of Bernoulli Eqn Compressible Conditions

$$\Delta \frac{1}{2} (v)^{2} + g \Delta h + \int_{p1}^{p2} dp / \rho + Ws + \sum_{i}^{p} (\frac{1}{2}v^{2} \frac{L}{R_{h}}f)_{i} + \sum_{i}^{p} (\frac{1}{2}v^{2}e_{v})_{i} = 0$$

Mechanical Energy Balance (Bernoulli Equation)

• For Single-Phase Gas Flow in Pipes, the MEB reduces to:

 $dp/\rho = -(g \sin \theta/g_c + 2f_f u^2/g_c D) dL$

• Basis for CS, Gray & A-C

Bernoulli for Single Phase Oil Incompressible Conditions

$$\frac{dp}{d\rho} + \frac{vdv}{g_c} + \frac{g}{g_c}dz + \frac{2f_f v^2 dL}{g_c D} + dW_s = 0$$

• Basis for Hagedorn-Brown & Beggs/Brill

Note: If Continuity Doesn't Hold, the Well is Loading–up (which is important to know)

Using a Direct Bernoulli Solution for WB

- Works for Oil, Gas or Water (Continuity)
- Gas
 - Have DP, solve for rate
 - Have Rate, solve for DP
- Oil
 - Have Rate, solve for Water cut
 - Have DP, solve for Water cut
- Much Easier to Apply Parametric Models:
 - Thermal Transients
 - Rate Transients
 - Phase Transients
 - Combined Rate, Phase & Thermal Transients

Completion Modeling

- Reconcile Well Geometry (frac, horizontal, etc.) with base inflow
 - Build Dual Perm Model
 - Build "skin" model (easiest way if it works)
- Reconcile Completion/Reservoir Interaction
 - Partial Perforation/Penetration
 - Pay Loss/Growth
 - Near Well Stresses Elasto-Plastic Rock
- True "Afterflow" vs. Terminal Velocity Flow

Closed-Loop Reservoir Solution

- Dr. Fred...Wavex Theory
- Focus on fact that it's the same sol'n as conventional in radial flow and in PSS flow, but has a banded regime solution during post-boundary transient flow

Boundary Contact Types

• Dr. Fred talks about boundary contact types, especially gas-water contacts and fizzy oil-water contacts

Results of the WaveX Method...

- A Closed Solution
- Running Volumetrics don't have to reach PSS to get a volume
- More Accurate Permeability-Thickness
- More Accurate Distances to Limits
- Differentiate between Faults, Strat-outs & Gas-Liquid Contacts
- Relative Position of Limits to Each Other
- A Map You can show the G&G guys without getting laughed out of the room

Boundary Contact Typing: H2O Contact

Transient and Regime Recognition

- Locate New Transients
 - Rate goes to zero, Rate stops being zero
 - Rate changes enough to start new transient
 - Pressure Methods
 - × Wavelets
 - De-convolution Variance
 - × DP Logic

Banded Response Recognition

- Transient vs. Steady-State
- Boundary Recognition
- Transition Recognition

ERROR: stackunderflow OFFENDING COMMAND: ~

STACK: